Wednesday, 18 March 2015

Introduction To The Smart Grid

                 Established electric power systems, which have developed over the past 70 years, feed electrical power from large central generators up through generator transformers to a high voltage interconnected network, known as the transmission grid. Each individual generator unit, whether powered by hydropower, nuclear power or fossil fuelled, is large with a rating of up to 1000 MW. The transmission grid is used to transport the electrical power, sometimes over considerable distances, and this power is then extracted and passed through a series of distribution transformers to final circuits for delivery to the end customers.

           The part of the power system supplying energy (the large generating units and the transmission grid) has good communication links to ensure its effective operation, to enable market transactions, to maintain the security of the system, and to facilitate the integrated operation of the generators and the transmission circuits. This part of the power system has some automatic control systems though these may be limited to local, discrete functions to ensure predictable behaviour by the generators and the transmission network during major disturbances.

           The distribution system, feeding load, is very extensive but is almost entirely passive with little communication and only limited local controls. Other than for the very largest loads (for example, in a steelworks or in aluminium smelters), there is no real-time monitoring of either the voltage being offered to a load or the current being drawn by it. There is very little interaction between the loads and the power system other than the supply of load energy whenever it is demanded.

        The present revolution in communication systems, particularly stimulated by the internet, offers the possibility of much greater monitoring and control throughout the power system and hence more effective, flexible and lower cost operation. The Smart Grid is an opportunity to use new ICTs (Information and Communication Technologies) to revolutionise the electrical power system. However, due to the huge size of the power system and the scale of investment that has been made in it over the years, any significant change will be expensive and requires careful justification.
 
            The consensus among climate scientists is clear that man-made greenhouse gases are leading to dangerous climate change. Hence ways of using energy more effectively and generating electricity without the production of CO2 must be found. The effective management of loads and reduction of losses and wasted energy needs accurate information while the use of large amounts of renewable generation requires the integration of the load in the operation of the power system in order to help balance supply and demand. Smart meters are an important element of the Smart Grid as they can provide information about the loads and hence the power flows throughout the network. Once all the parts of the power system are monitored, its state becomes observable and many possibilities for control emerge.
In the UK, the anticipated future de-carbonised electrical power system is likely to rely on generation from a combination of renewables, nuclear generators and fossil-fuelled plants with carbon capture and storage. This combination of generation is difficult to manage as it consists of variable renewable generation and large nuclear and fossil generators with carbon capture and storage that, for technical and commercial reasons, will run mainly at constant output. It is hard to see how such a power system can be operated cost-effectively without the monitoring and control provided by a Smart Grid.

No comments:

Post a Comment